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Abstract--The effects of the yield number on the steady, incompressible creeping flow of a non-Newtonian 
Bingham fluid through a four-to-one axisymmetric sudden contraction is studied numerically. The effects 
of both the yield and Peclet numbers on the thermal field, created due to the viscous dissipation associated 
with such flows, are investigated. The results demonstrate the dependency of the flow field on the yield 
number and the strong influence of both the yield and Peclet numbers on the macroscopic and local 
characteristics of the thermal field. The heat transfer results indicate the significance of heating via viscous 

di,;sipation, especially in the vicinity of the contraction plane at high yield numbers. 

INTRODUCTION 

The flow through axisymmetric sudden contractions 
has attracted considerable attention because it is en- 
countered in numerous industrial applications, includ- 
ing the extrusion of' polymeric fluids and melts. This 
same flow has also been used frequently as a bench- 
mark problem in cc,mputational fluid mechanics and 
heat transfer. Its geometrical simplicity and hydro- 
dynamic complexity make it an ideal problem for test- 
ing various numerical methods as well as validating 
the constitutive equations used to characterize the 
rheology ofnon-Newtonian fluids. As a result a wealth 
of literature exists on such a flow covering a wide 
range of fluids and governing parameters. 

Figure 1 shows the basic characteristics of the 
flowfield under consideration. Assuming a long 
enough pipe element upstream, the flow at a small 
distance upstream cf the contraction can be assumed 
to be fully developed. In the case of a Newtonian fluid, 
as the contraction plane is approached, the flow field is 
disturbed resulting in the formation of a recirculating 
flow region at the 90 degree corner. The extent of this 
region is strongly dependent upon the two governing 
parameters, i.e. the Reynolds number Re which is the 
flow parameter and expansion ratio /~ which is the 
geometrical parameter. At the throat the flow accel- 
erates as it enters the smaller pipe, where another 
separated flow region could form depending again on 
both the flow and geometric parameters. Therefore, 
the flow continues developing until fully developed 

t Author to whom correspondence should be addressed. 
Present address: Mechanical Engineering Department, Poly- 
technic University, Route 110, Farmingdale, NY 11735, 
U.S.A. 

conditions are eventually reached further down- 
stream. 

In the case of Newtonian fluids, numerous previous 
studies have concentrated on the effect of both the 
contraction ratio and the Reynolds number on the 
flow structure. These studies include the experimental 
works of Burke and Berman [1] and Ramamurthy and 
McAdam [2]. A limited review of both experimental 
and computational work is given by Boger [3]. The 
size of the corner recirculating flow region increases 
with increasing contraction ratio and decreasing 
Reynolds numbers. However, once the Re is in the 
creeping flow range and /~ is greater than four the 
size of this region remains unchanged. For higher 
Reynolds numbers the streamwise velocity profile at 
the entrance of the downstream pipe shows concavities, 
absent in creeping flows. Numerous experimental and 
computational studies have established the features of 
such a flow to the point where Boger [3] considers it 
'solved'. 

Numerous studies have concentrated on the struc- 
ture of such a flow for various non-Newtonian fluids. 
Kim-E et al. [4] presented results for an inelastic shear- 
thinning Carreau fluid. Their results indicate that 
increasing shear thinning reduced the size of the recir- 
culating flow region and increased the entrance pres- 
sure losses. A number of review papers like those of 
Boger [3] and White et al. [5] discuss the charac- 
teristics of the flowfield in the case of elastic fluids. 
Increasing Deborah numbers (De), i.e. increasing elas- 
tic effects, result in the enlargement of the corner vor- 
tex and eventually in the onset of three-dimensional 
(3D), highly localized, temporal instabilities. 

Fluids exhibiting a yield stress are frequently en- 
countered in numerous applications related to the 
plastics, food, petroleum and pharmaceutical indus- 
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NOMENCLATURE 

Cf friction coefficient, Zw/pU ? 
D diameter of the upstream pipe 
d diameter of the downstream pipe 
k thermal conductivity 
La detachment length 
Lo entry length 
Nu Nusselt number based on bulk 

temperature, [(O0/c3rlr_ a )/0hi 
Pr Prandtl number, ~l/pa 
Pe Peclet number, Re Pr 
p non-dimensional pressure, Pip U~ 
P pressure 
r non-dimensional radial distance, 

R/Rw 
ro non-dimensional 'core' radius, Ro/Rw 
R radial distance 
R0 radius of the 'core' 
Rw radius of the upstream pipe 
Re Reynolds number, pdU~/rl 
T temperature 
u non-dimensional streamwise velocity, 

U/Ui 
U streamwise velocity 
v non-dimensional radial velocity, V/U~ 
V radial velocity 
x non-dimensional streamwise distance, 

X/Rw 

X streamwise distance 
Y yield number, zoRw/~lU~. 

Greek symbols 
thermal diffusivity 

fl contraction radio, D/d 
A o rate of  deformation tensor, (du~/Oxj) + 

(au/ax3 
q plastic viscosity 
0 non-dimensional temperature, 

( T -  TO/(q U?lk) 
0b non-dimensional bulk temperature, j'~ 

u(r)O(r)r dr 
• viscous dissipation term, (paf/Pe) 

{½(A: A)} 
p effective viscosity 
#eft non-dimensional effective viscosity, 

~/~ 
p density 
z~j stress tensor element 
Zo yield stress. 

Subscripts 
c centerline 
i inlet, indicating bulk properties 
w wall. 

tries. From all such fluids the simplest rheology is that 
of a Bingham fluid which exhibits a linear stress-rate- 
of-strain relationship once the yield stress has been 
exceeded. Yield-power-law fluids (also known as Her- 
schel-Bulkley fluids) are another class of yield stress 
exhibiting fluids. Their study is of considerable 
importance both from a rheological and fluid mech- 
anics point of view. It is only recently however, that 
studies have addressed flow fields of Bingham and 

Herschel-Bulkley fluids of some complexity. The 
review paper by Bird and Dai [6] summarized the 
early work in this field. Some experimental and com- 
putational studies have followed. Park et al. [7] and 
Wildman et al. [8] have reported LDV based exper- 
imental results concerning the flow of Herschel- 
Bulkley slurries through a straight pipe and a grad- 
ual concentric contraction respectively. Vradis and 
Otugen [9] and Scott and Mirza [10] have presented 
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Fig. 1. Geometry and boundary conditions. 

~ x 

/Ix 0x 0x 



Creeping flow of a Bingham plastic 1557 

numerical solutions to the problem of the flow of a 
Bingham plastic over a sudden axisymmetric expan- 
sion. Isothermal and creeping entry and exit flows 
through axisymmet:ric and planar extrusion dies were 
studied numerically for a Bingham plastic by Abdali 
and Mitsoulis [11]. In their work, the approximation 
by Papanastasiou [l 2] was employed to determine the 
shape and extent of yielded/unyielded regions, extrud- 
ate swell and excess pressure losses as a function of 
a dimensionless yield stress. No information on the 
structure of the flow field is given. 

In many creeping; flows of yield stress fluids a sig- 
nificant portion of the energy needed to maintain the 
flow is dissipated, mostly in the regions of large shear 
stresses and large :rates of deformation. An under- 
standing of the interaction between the mechanisms 
of heat transfer, thermal energy storage and dis- 
sipation of the flow energy in addition to their ultimate 
influence on the developing thermal field is of sig- 
nificant practical interest. Viscous heating effects, if 
large enough, coulct result in significant increases in 
temperature which in turn could alter the plastic vis- 
cosity, the yield stress and the thermophysical proper- 
ties of the fluid. This, in return, would reflect on the 
obtained rheological measurements in the case of 
rheometry studies and, in the case of extrusion prob- 
lems, affect the marLufacturing process and ultimately 
product quality. Therefore, the influence of the vis- 
cous heating effects on the generated thermal field 
should be quantified and used to further enhance the 
reliability of rheolcgical measurements, and to opti- 
mize manufacturing; processes. 

Despite their practical importance non-isothermal 
studies of flows of Bingham plastics are scarce and 
limited to flows through simple geometries. The 
entrance pipe flow and heat transfer problem for a 
simultaneously developing hydrodynamic and ther- 
mal fields have been studied numerically by Samant 
and Marner [13]. In this numerical study, however, 
viscous heating and axial conduction were neglected. 
Vradis et al. [14] conducted a comprehensive numeri- 
cal parametric study of the same problem considering 
axial conduction and internal heating due to viscous 
dissipation. In both studies the Nusselt number, Nu, 
was reported to increase with the yield stress in the 
fully developed region of the tube. It was also shown 
that viscous dissipation gives rise to Nusselt numbers 
that are order of magnitude higher than those 
obtained when viscous dissipation is neglected. Payvar 
[15] derived expressions for fully developed tem- 
perature profiles and Nusselt numbers for heat trans- 
fer in the dissipative flow ofa  Bingham plastic between 
parallel plates and through circular pipes. The 
Graetz-Nusselt prc,blem was extended to a Bingham 
plastic by Wissler and Schechter [16]. Forrest and 
Wilkinson [17] presented a theoretical treatment of the 
heat transfer problem in laminar flows of a Bingham 
plastic with temperature-dependent properties in cir- 
cular tubes. In his theoretical analysis, Johnston [18] 
concluded that in the Graetz problem for a Bingham 

plastic in laminar tube flow, axial conduction can be 
ignored for Pe > 1000. Non-isothermal recirculating 
flows as well as flows of a Bingham plastic through a 
sinusoidal channel were studied by Murty [19]. The 
problem consisted of a Bingham plastic enclosed in 
the annular region between a stationary, closed cylin- 
der and an inner rod moving with a constant velocity. 
In his study Murty utilized a Galerkin's finite element 
scheme and demonstrated the importance of viscous 
dissipation in such flows. Assuming a prescribed heat 
transfer coefficient at the boundaries, Mitsoulis et al. 
[20] carried out inelastic, non-isothermal simulations 
of the flow of a Herschel-Bulkley fluid through a 
sudden contraction and presented results showing the 
extent and shape of yielded-unyielded regions and the 
development of the temperature field. Furthermore, 
they used a heuristic approach to determine the level 
of elasticity required to reproduce the experimental 
results and showed the appreciable temperature rise 
due to viscous dissipation. 

The present work concentrates on the creeping flow 
of a viscoplastic, Bingham fluid through a sudden 
contraction in a pipe under steady, incompressible 
and laminar flow conditions. There are no reported 
numerical solutions of the fully elliptic governing 
equations regarding the detailed flowfield structure of 
creeping confined flows of Bingham fluids through 
such a geometry and the thermal field generated due 
to viscous dissipation. A finite-differences based tech- 
nique is used for the solution of the elliptic governing 
equations for mass conservation, momentum balance, 
and energy conservation. In this study attention is 
given only to the constant wall temperature case that 
is set equal to the fluid temperature at the inlet. It is 
further assumed that the variations of the yield stress, 
the plastic viscosity, and the thermophysical proper- 
ties with both temperature and pressure are negligible. 
This last assumption simplifies the analysis by decoup- 
ling the equations of energy and momentum and is 
justified by the fact that the main intent here is to 
determine under which conditions the viscous heating 
is likely to play a significant role. The effect of the 
yield number on the local and global kinematic 
properties of the resulting flow field is investigated. 
The effect of the Peclet number on the characteristics 
of the thermal field resulting from viscous dissipation 
is also studied. The contraction ratio is maintained 
constant throughout this study and is equal to four. 

THE GOVERNING EQUATIONS 

The non-dimensionalized governing elliptic equa- 
tions for the non-isothermal, steady, laminar and 
incompressible flow of a non-Newtonian fluid with 
temperature independent properties in cylindrical 
coordinates (written in non-dimensional form) are: 

c~u 1 dry 
~ x + r ~ - = 0  (1/ 
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du cqu dp 1 ( d T c~u\ l t2.O.yx) dx Or dx Ree ~xx 

+ ~rrt/Xeffrt~Tr + (2) 

dv dv dp 1 (1 d / dr\ 
U~x +v dr dr + Ree~r ~TrtPerrr~Tr) 

d /  (du dr\\ v) 
+ Fxt,O,ldr+ g)J-2#o,,.r I (3) 

"77 + Tr = ; Fr t grr ) 

+ d ( ~ ? 0 ~ + ~ { ~ ( A : A ) }  " 0 x \ 0 x j j  (4) 

The concept of the 'effective viscosity' has been 
utilized above in writing the governing equations. For 
a Bingham fluid the effective viscosity #ou is given by 
the following formula (Bird et al. [21]): 

{ } Y for 7 ( z . 0 > , 2  (5a) 
= 1 + ,/(½(A: a)) 

and 

/~eff = ~ for ~(r:r) ~< r02 (5b) 

where Y = %Rw/t/U~ is the yield number for Bingham 
fluids and serves as a non-dimensional yield stress. 
Here 

A: Zi = ZEAl, A,, 
i j 

is the second invariant ofA o. In cylindrical coordinates 
the functions ~(A : A) is given by: 

½(A : A) = 2"f(dv~2 (\drJ tr) c~u~2 

(6) 

RESULTS 

The computational method employed in this study 
has been used extensively in the past and its accuracy 
and efficiency is well documented, and is presented in 
detail by Vradis and Van Nostrand [22]. For this 
reason it will not be discussed here. However, the 
computational difficulties associated with the numeri- 
cal implementation of equation (5b) are discussed 
next. 

In the core regions of the flow the effective viscosity 
#e~r attains an infinite value since A = 0. Very large 
values of peu create convergence problems because the 
coefficient matrix becomes very 'stiff' due to large 
differences in the magnitude of its elements. In order 
to avoid such problems, when the value of A : A drops 
below a certain present level, the effective viscosity/zos 

is 'frozen' at a certain relatively high value #0, thus 
warranting convergence. The same approach has been 
successfully adopted by other researchers in the past 
(see O'Donovan and Tanner [23] and Lipscomb and 
Denn [24]). Thus the Bingham plastic rheological 
behavior is approximated by the following equations: 

.o,, = 1+  A ) ) J  f o r  1 ~(~: %') > T~ 

(7a) 

and 

~ 0  l # o s = - -  for i (z :z)~<r  2. (Tb) 
t/ 

The result of such an approximation is that the 
rheological behavior of the fluid is altered from that 
of a Bingham fluid to one with two different viscosi- 
ties, i.e. a high viscosity of/~0 at low rates of defor- 
mation and a lower value oft /at  higher rates of defor- 
marion. To accurately simulate a Bingham plastic 
behavior very high/to values should be utilized. The 
accuracy and computational efficiency of this numeri- 
cal scheme were found to be quite insensitive to the 
cutoff value, once this value is greater than/~0 = 1000 
t/Y. In previous work by O'Donovan and Tanner [23] 
and Beverly and Tanner [25] a 1000 t/value for #0 was 
adopted after extensive numerical experimentation. 
Because of the sharp variations in the values of effec- 
tive viscosity, strong under-relaxation on the effective 
viscosity from one iteration level to the next is neces- 
sary to obtain convergence. 

After extensive studies to establish grid independent 
solutions, a 39 × 84 computational grid was employed 
in the upstream pipe and a 61 × 21 one in the down- 
stream pipe. The computational domain extended up 
to x = - 10 and x = 15 upstream and downstream of 
the contraction plane, respectively. The grids were 
nonuniformly spaced in the streamwise direction, clus- 
tered at the inlet section and both upstream and down- 
stream of the contraction plane. The grids in the radial 
direction were uniformly spaced. This distribution was 
dictated by the desire to capture the details of both 
the hydrodynamic as well as the thermal field. The 
computational domain upstream of the contraction 
plane was chosen so that a fully developed velocity 
profile can be used as the inlet condition, while the 
downstream domain is long enough for both a hydro- 
dynamically and thermally fully developed flow to 
develop at the exit. 

Figure 2 shows the effective viscosity contours for 
two yield numbers, Y = l0 and Y = 640. As shown, 
the plug regions upstream of the contraction plane 
are characterized by a high viscosity value. This zone 
extends further towards the wall as the yield number 
increases. Another high viscosity zone also appears at 
the corner in both cases. These high viscosity zones 
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Fig. 2. Contours of effective viscosity for Y = 10 and 640. 
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indicate the existence of a zone of very low rates of 
deformation. Numerical experimentation indicated 
that these rates of deformation decrease rapidly with 
increasing /~0 ~md become almost zero for 
/% = 1 000 000 q Y. This strongly suggests a stagnant 
solid like behavior close to the corner for the limiting 
case of #0 = ~ ,  i.e. at a real Bingham plastic. For 
small yield numbers, i.e. Y = 10, no plug region is 
formed in the small diameter pipe. Increasing the yield 
number to large enough values results in the appear- 
ance of another sizeable plug region downstream of 
the contraction, a:~ shown in Fig. 2(b). The "effective 
yield number" downstream of the contraction is 1/64 
of that upstream of the contraction. Therefore, for 
small yield numbers the flow in the small pipe is prac- 
tically Newtonian. Only at higher yield numbers the 
yield effects become important downstream of the 
contraction resulting in the formation of the plug 

region along the centerline. On the other hand, the 
flow field in the neighborhood of the contraction plane 
always undergoes large deformation rates which 
results in a low viscosity zone, regardless of the yield 
number value. Figure 2 sheds light on the flow field 
kinematics of a Bingham plastic, indicating a solid 
like behavior in plug and corner regions, and a similar 
to Newtonian behavior in the vicinity of the con- 
traction area. 

The effect of the yield number on the flowfield struc- 
ture is demonstrated in Fig. 3, where the streamlines 
are shown for three different yield numbers. In general 
the flowfield in the current geometry consists of three 
distinct flow domains. The first is that appearing close 
to the inlet section, where the effect of the contraction 
plane is weak or non-existent, and thus fully developed 
conditions prevail, as indicated by the parallel to the 
wall streamlines. The second is the domain where the 
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effect of the contraction plane is dominant ,  i.e. the 
corner and the vicinity of the inlet to the smaller pipe. 
This domain is characterized by the displacement of 
the streamlines towards the centerline as the con- 
traction plane is approached. In the Newtonian case, 
as seen in Fig. 3(a), a separated flow region forms. 
The detachment length is approximately 1/3 the large 
pipe radius upstream of the contraction plane. This is 
consistent with what has been reported earlier (see 
Boger [3] and Kim-E et  al. [4]). In the vicinity of the 
centerline the flow accelerates rapidly as the throat is 
approached. As the smaller diameter pipe element is 
entered, the flow rapidly evolves to the corresponding 

fully developed flow conditions, i.e. the third flow 
domain. The corresponding streamlines in the case of 
the flow of a viscoplastic fluid at Y = 10 is shown in 
Fig. 3(b). Again, similar features are observed except 
that no separation is observed close to the 90 ° corner 
where, in this case, the flow comes practically to a 
dead stop. As the yield number  increases from zero to 
low values, the extent of this secondary flow region 
rapidly decreases. Numerical experimentation shows 
that it ceases to exist at a yield number  of about  one. 
Increasing the yield number  results in the growth of 
this semi-stagnant zone. However, as the yield number  
is further increased to a value of Y = 640 [see Fig. 
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3(c)], the growth of the semi-stagnant region does 
not increase appreciably. Numerical experimentation 
shows that the length of this domain reaches an 
asymptotic value c,f 1.0 Rw as Y --* ~ .  

In the case of Newtonian fluids it has been estab- 
lished that the evolution of the streamwise component 
of the velocity along the centerline in the immediate 
vicinity of the plane of contraction is for all practical 
purposes independent of the Reynolds number for 
Re ~< 1 and independent of the contraction ratio for 
fl >~ 4 and low Re. Kim-E et al. [4] showed that this 
evolution is also irLdependent of the power law index 
in the case of non-Newtonian shear thinning fluids. 
The present study establishes a similar fact for the 
case of Bingham fluids where the effect of the yield 
number is minimal resulting in indistinguishable 
curves as can been seen in Fig. 4. Upstream of this 
region, the centerline velocity depends on the yield 
number since the fially developed profiles at the inlet 
differ with Y. The centerline velocity evolution is also 
different downstre~Lm where the fully developed values 
also vary with Y. Notice that in this region the differ- 
ences are more pronounced than upstream. This is 
due to the fact that the differences of the profiles 
upstream are not significant given that for Y > 10, the 
profiles are fairly insensitive to yield number vari- 
ations. However, downstream of the contraction the 
bulk velocity is 16 times of that upstream and the 
effective yield number is 1/64 of the value upstream 
(which are used here as the reference). As a result the 
effective yield numbers are lower in the smaller pipe and 
thus, the substantial variations depicted in this figure. 

Figure 5 shows the axial variation of the friction 
coefficient, Cr, with Y. As shown, increasing yield 

numbers result in increasing friction coefficients both 
upstream and downstream of the contraction plane. 
This trend is expected due to the thinning of the shear- 
ing layer close to the wall with the yield number. 
Again, this thinning effect is less pronounced in the 
downstream portion of the confining geometry due to 
the strong shearing influence of the smaller radius 
wall which tends to suppress the yield stress related 
behavior. Close to the contraction plane the effect of 
the very low rates of deformation zone is characterized 
by the sudden drop in the value of Cf. The influence 
of the contraction section is felt further upstream of 
the contraction plane for fluids with higher yield num- 
bers, as evidenced in the earlier drop of the Cf values 
from the fully developed ones at the inlet. This is 
attributed to the higher effective viscosities associated 
with higher yield numbers. It should be noticed again 
that the friction coefficient evolution in the immediate 
vicinity of the contraction plane is independent of the 
yield number. 

A significant portion of the hydrodynamic charac- 
teristics of the flowfields in sudden circular con- 
tractions could be easily revealed by studying the evo- 
lution of the profiles of the streamwise component of 
the velocity. As seen in Fig. 6(a), in the case of a 
Newtonian fluid, the profile initially flattens out due 
to the deceleration of the flow along the centerline 
caused by a positive pressure gradient upstream of the 
contraction. Then, very close to the contraction plane, 
the velocity is negative near the wall and rapidly 
increasing in value along the centerline up to the plane 
of the throat. At the throat, the profile is not flat 
given the very rapid propagation of the wall influence 
towards the centerline for creeping flows. After that it 
evolves with the velocities close to the wall decreasing 
and the ones close to the centerline increasing to their 
asymptotic values. The effect of the existence of a yield 
stress is evident both in the upstream and downstream 
portions of the geometry, as can be seen in Fig. 6(b). 
Upstream, the core-flow region dissipates as the throat 
is approached due to severe flow acceleration. As men- 
tioned earlier there are no regions of negative vel- 
ocities (due to the disappearance of the corner vor- 
tices). Downstream of the contraction, the velocity 
profile evolves towards its fully developed shape faster 
close to the wall than close to the centerline. This is 
consistent with the earlier observations of Vradis et 
al. [14]. As the flow develops a new core-flow region 
appears, the size of which increases with increasing 
yield numbers. Notice that the velocity profiles in the 
developing flow region downstream of the throat are 
not very sensitive to the yield number since, as explained 
earlier, the characteristics of the flow field in this area 
are Newtonian-like given the very high rates of defor- 
mation. This last fact also explains the overshoots in 
the centerline velocity evolution right downstream of 
the contraction plane. Given the Newtonian-like 
behavior of the flow, the velocity profile at the 
entrance of the smaller pipe is independent of the 
yield number. For  a Newtonian fluid this profile will 
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Fig. 6. Effect of yield number on the development of the profiles of the axial component of the velocity. 

eventually evolve to the parabolic distribution of the 
Poiseuille flow in which the centerline velocity is twice 
the bulk one. However, for Bingham fluids the fully 
developed centerline velocity value is decreasing with 
the yield number. Thus, as the yield number increases 
the centerline velocity experiences an increasingly 
higher drop from that at the entrance to the small pipe 
as fully developed conditions are approached. 

The wall temperature is maintained constant and 
equal to the temperature of the incoming fluid. Under 
these conditions, the only phenomenon resulting in 
the appearance of temperature gradients is the heat 
generated due to viscous dissipation. It is, therefore, 
imperative to study the distribution of the viscous 
dissipation term in the energy equation throughout 
the flowfield, since it is this term that derives the heat 
transfer phenomena studied here. In the case of a 
Newtonian fluid (see Fig. 7(a), Y = 0) and close to 
the inlet, there is a monotonic increase in the value of 
the dissipation term • from the centerline, where it 
attains very low values due to relatively low rates of 
deformation, to the wall, where it attains a maximum 

value due to the high rates of deformation near the 
wall. As the contraction plane is approached and near 
the wall close to the corner there exists a recirculating 
flow region characterized by low rates of deformation 
and consequently low values of the dissipation func- 
tion. However, in the vicinity of the entry to the small 
diameter pipe the flow acceleration results in very high 
rates of deformation and consequently in very high 
values of ~. As the smaller pipe is entered, the hydro- 
dynamic field develops rapidly resulting in a dis- 
tribution of • similar to that at the inlet of the larger 
pipe with overall values, however, much higher due to 
the increase shear which results from the increase in 
bulk velocity. In the case of a Bingham fluid and for 
Y = 64 [see Fig. 7(b)], the existence of a core-flow (i.e. 
undeforming) region upstream results in a cor- 
responding zone of very low (for an ideal Bingham 
plastic, zero) values of the dissipation function. In 
the region where velocity gradients are sustained, the 
shear is higher than that in the case of a Newtonian 
fluid and as a result the transition zone in the radial 
direction from very low values to the maximum value 
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at the wall takes place in a much narrower zone. At 
the corner, the existence of the near stagnant zone 
results in a corresponding zone of low values of ~. 
Near the inlet to the small pipe the flow, as explained 
earlier, is Newtonian-like, thus resulting in nearly 
identical • distributions. In the small pipe, the dis- 
tribution of • is similar to that in the entry of the 
upstream pipe given the appearance of a core-flow 
region along the axis which results in a corresponding 
zone of practically zero rates of viscous dissipation. 
Close to the wall high values of • are experienced 
again due to the high shear rates. 

With this information available, it is now much 
easier to understand the temperature and Nusselt 
number distributions. The evolution of the tem- 
perature profile due.. to viscous heating is both quali- 
tatively and quantitatively described in Fig. 8 for vary- 
ing yield and Peclet numbers. In the case of a 
Newtonian fluid the relatively low levels of shear result 
in a very small increase in temperature upstream of 
the contraction plane and close to the inlet, as seen in 
Figs. 8(a) and (b). The heat generated due to the 
viscous dissipation is either convected away at the wall 
or conducted into the interior of the flow domain 
toward the centerline. As expected the temperature 
rise away from the wall is higher in the case of the low 
Peclet number [Fig. 8(a), Pe = 1] since the increased 
effects of convective cooling in the case of Pe = 100 
[Fig. 8(b)] tend to decrease the temperature levels. In 
the immediate vicirLity of the contraction plane and 
close to the inlet of the smaller pipe the very high 
values of the viscous dissipation function result in 
substantial increase:~ in temperature. Again, the tern- 

peratures are high in the case of the low Peclet number 
since the heat transfer to the walls is dominated by 
conduction rather than convection. It is important to 
notice here the very high temperature gradients along 
the contraction wall. In the smaller pipe, the higher 
amounts of heat dissipated result in a further increase 
in temperature, which within a certain distance from 
the throat reaches a fully developed distribution. This 
distance increases with the Peclet number as is already 
well established. For a Bingham fluid with Y = 10, 
the higher values of the viscous dissipation function 
result in temperature increases close to the inlet greater 
than those in the case of the Newtonian fluid, as can 
be seen in Figs. 8(c) and (d). The effect of the Peclet 
number is similar to that in the Newtonian case. Close 
to the contraction plane the flow is Newtonian like 
and as a result so is the temperature distribution. The 
same is true in this case for the flow in the smaller 
diameter pipe, as explained earlier. A further increase 
in the value of the yield number to Y = 640 results in 
further increases of the temperature upstream of the 
contraction and smaller thermal entrance lengths in 
the smaller pipe [see Figs. 8(e) and (f)], as has been 
already established by Vradis et al. [14] [notice that 
the contour colors of Figs. 8(e) and (f) are different 
than those in Figs. 8(a)-(d)]. 

Very informative is the bulk temperature dis- 
tribution in the flow as depicted in Fig. 9(a) and (b) 
for two Peclet numbers. The entrance effects at the 
inlet result in the rapid increase of the bulk tempera- 
ture, followed by a region of constant values due to 
the development of the flow. As the contraction is 
approached the temperature rises rapidly again. In the 
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case of  a low Peclet number, it reaches a maximum 
value at the throat,  while in the case of  the higher 
Peclet number it continues to rise as the fluid enters 
the smaller pipe due to the higher rates of  cooling 
along the contraction plane in this case. Due to the 
phenomena involved, which were explained earlier, 
this bulk temperature rise increases with the yield 
number. 

Finally, Figs. 10(a) and (b) show the Nusselt num- 
ber distribution along the wall for two different values 
of  the Peclet number of  Pe = 1 and 100. As expected, 
a peak value appears at the inlet section (very rapid 

thermal field development) followed by a domain of  
more or less constant Nussett numbers due to the 
developed hydrodynamic and thermal fields region in 
the middle port ion of  the large (upstream) pipe. As the 
contraction wall is approached, its influence results in 
an initially gradual and then rapid reduction in the 
Nusselt number, occurring at x = - 3 for Newtonian 
fluids and increasing with yield number for Bingham 
plastics up to x = - 5  for Y = 6 4 0  in the case of  
Pe = 1. At  Pe = 100, however, this influence starts at 
x = - 1  for a Newtonian fluid and increases up to 
x = - 3  for Y = 640. At  the corner the Nusselt num- 
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ber reaches a value', of zero. As the smaller pipe is 
entered a local maximum of the Nusselt number is 
observed in all cases due to the entrance effects. This 
value increases with the Peclet number as anticipated 
based on the work of Vradis et al. [14]. Again, the 
Newtonian like nature of the flow near the contraction 
leads to a collapse of all the curves for different yield 
numbers into one :in the immediate vicinity of the 
contraction plane. Thus, the heat transfer charac- 
teristics near the corner depend on the Peclet number 
only, and are independent of the yield number. Far 
away from the contraction plane, both upstream and 

downstream, the Nusselt number increases with the 
yield number for all Peclet numbers. This is consistent, 
once more, with the observations of Vradis et al. [14] 
and is explained by the increase in the rates of heat 
removal associated with higher velocity gradients, at 
higher yield numbers, in the region close to the wall. 
The variation of the Nusselt number with the yield 
number in the fully developed flow regime and for 
high yield numbers can be expressed in a power law 
form, the exponent being equal to 1/2, i.e. N u  ~ y i /2 .  

It should be noted that the same behavior has been 
established for the Sherwood number variation with 
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the yield n u m b e r  in the case of  the flow of  a sphere 
in a Bingham fluid (see Beris et al. [26]), the power  
exponent  a t ta in ing the value of  1/6. 

C O N C L U S I O N S  

The non- i so thermal  creeping flow of  a viscoplastic 
Bingham fluid t h rough  an  axisymmetric  sudden con- 
t rac t ion has  been analyzed using a finite-differences 
based numerical  technique. The  cont rac t ion  rat io  was 
fixed at four while a wide range of  yield numbers  and  
Peclet numbers  were studied. The generated thermal  
field is entirely due to viscous heating. The results 
establish the d isappearance  of  the corner  vortex at  
very low yield numbers  and  the independence of  the 

flow characterist ics f rom the yield n u m b e r  in the 
immediate  vicinity of  the cont rac t ion  plane, where the 
flow is practically Newtonian-l ike.  It is also shown 
that  the characterist ics of  the thermal  field are sen- 
sitive to the yield and  Peclet numbers .  Viscous heat ing 
is significant in the immediate  vicinity of  the contrac-  
tion, with its significance diminishing with increasing 
Peclet number .  
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